Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes.
نویسندگان
چکیده
Proteases are enzymes that cleave peptide bonds in protein substrates. This process can be important for regulated turnover of a target protein but it can also produce protein fragments that then perform other functions. Because the last few decades of protease research have confirmed that proteolysis is an essential regulatory process in both normal physiology and in multiple disease-associated conditions, there has been an increasing interest in developing methods to image protease activity. Proteases are also considered to be one of the few 'druggable' classes of proteins and therefore a large number of small molecule based inhibitors of proteases have been reported. These compounds serve as a starting point for the design of probes that can be used to target active proteases for imaging applications. Currently, several classes of fluorescent probes have been developed to visualize protease activity in live cells and even whole organisms. The two primary classes of protease probes make use of either peptide/protein substrates or covalent inhibitors that produce a fluorescent signal when bound to an active protease target. This review outlines some of the most recent advances in the design of imaging probes for proteases. In particular, it highlights the strengths and weaknesses of both substrate-based and activity-based probes and their applications for imaging cysteine proteases that are important biomarkers for multiple human diseases.
منابع مشابه
Activity based probes for proteases: applications to biomarker discovery, molecular imaging and drug screening.
Recent advances in global genomic and proteomic methods have lead to a greater understanding of how genes and proteins function in complex networks within a cell. One of the major limitations in these methodologies is their inability to provide information on the dynamic, post-translational regulation of enzymatic proteins. In particular proteases are often synthesized as inactive zymogens that...
متن کاملDigestive alkaline proteases from the Tunisian barbell (Barbus callensis): Characterization and application as a detergent additive, in chicken feather-degradation and as a dehairing agent
Alkaline crude enzymes from the viscera of the Tunisian barbel (Barbus callensis) were extracted and characterized. Proteolytic crude extract from barbel viscera was active and stable in alkaline solution. The optimum pH and temperature were 11.0 and 55 °C, respectively, using casein as a substrate. The crude alkaline protease was extremely stable in the pH range of 5.0-12.0. Zymography activit...
متن کاملDigestive alkaline proteases from the Tunisian barbell (Barbus callensis): Characterization and application as a detergent additive, in chicken feather-degradation and as a dehairing agent
Alkaline crude enzymes from the viscera of the Tunisian barbel (Barbus callensis) were extracted and characterized. Proteolytic crude extract from barbel viscera was active and stable in alkaline solution. The optimum pH and temperature were 11.0 and 55 °C, respectively, using casein as a substrate. The crude alkaline protease was extremely stable in the pH range of 5.0-12.0. Zymography activit...
متن کاملSmart fluorescent probes for imaging macrophage activity.
Macrophages are multi-functional immune cells with key roles in host defense and tissue remodelling. The broad array of macrophage functions has prompted the development of very diverse smart fluorescent architectures, rationally designed to elicit a fluorescent signal only after target engagement. This tutorial review covers recent advances in the design, synthesis and application of smart flu...
متن کاملCurrent and prospective applications of non-proteinogenic amino acids in profiling of proteases substrate specificity.
Proteases recognize their endogenous substrates based largely on a sequence of proteinogenic amino acids that surrounds the cleavage site. Currently, several methods are available to determine protease substrate specificity based on approaches employing proteinogenic amino acids. The knowledge about the specificity of proteases can be significantly extended by application of structurally divers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current opinion in chemical biology
دوره 15 6 شماره
صفحات -
تاریخ انتشار 2011